Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles.
نویسندگان
چکیده
Human islet research is providing new insights into human islet biology and diabetes, using islets isolated at multiple US centers from donors with varying characteristics. This creates challenges for understanding, interpreting, and integrating research findings from the many laboratories that use these islets. In what is, to our knowledge, the first standardized assessment of human islet preparations from multiple isolation centers, we measured insulin secretion from 202 preparations isolated at 15 centers over 11 years and noted five distinct patterns of insulin secretion. Approximately three quarters were appropriately responsive to stimuli, but one quarter were dysfunctional, with unstable basal insulin secretion and/or an impairment in stimulated insulin secretion. Importantly, the patterns of insulin secretion by responsive human islet preparations (stable Baseline and Fold stimulation of insulin secretion) isolated at different centers were similar and improved slightly over the years studied. When all preparations studied were considered, basal and stimulated insulin secretion did not correlate with isolation center, biological differences of the islet donor, or differences in isolation, such as Cold Ischemia Time. Dysfunctional islet preparations could not be predicted from the information provided by the isolation center and had altered expression of genes encoding components of the glucose-sensing pathway, but not of insulin production or cell death. These results indicate that insulin secretion by most preparations from multiple centers is similar but that in vitro responsiveness of human islets cannot be predicted, necessitating preexperimental human islet assessment. These results should be considered when one is designing, interpreting, and integrating experiments using human islets.
منابع مشابه
In-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells
Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...
متن کاملاثر کادمیوم بر روی مارکرهای استرس اکسیداتیو، محتوا و ترشح انسولین در جزایر لانگرهانس جدا شده از پانکراس موش صحرایی
Background and purpose: Cadmium is a highly toxic industrial and environmental pollutant that is known as an important risk factor for developing diabetes. Oxidative stress is reported to be highly associated with diabetes and its complications. The aim of this study was to evaluate the effects of cadmium on oxidative stress response and secretory function of islets of Langerhans from rat pancr...
متن کاملبررسی القای تمایز سلولهای بنیادی به سلولهای بتای پانکراس بهوسیله عصاره متانولی یونجه
Background and Objective: β cell replacement therapy by pancreatic islet transplantation has become a promising treatment for type 1 diabetes. Medicago sativa L (Lucerne) from leguminosae family is known to exhibit hypoglycaemic activity both in animal and human studies. Most of these studies were concentrated on the effects of plant extracts on fasting glucose levels. Until now no researches h...
متن کاملTCF7L2 Regulates Late Events in Insulin Secretion From Pancreatic Islet β-Cells
OBJECTIVE Polymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affect insulin secretion are still unclear. We define the effects of TCF7L2 expression level on mature beta-cell function and suggest a potential mechanism for its actions. RESEARCH DESIGN AND METHODS TCF7L2 expression...
متن کاملHuman islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets.
Insulin secretion from the 2,000-3,000 beta-cells in an islet is a highly synchronized activity with discharge of insulin in coordinate secretory bursts at approximately 4-min intervals. Insulin secretion progressively declines in type 2 diabetes and following islet transplantation. Both are characterized by the presence of islet amyloid derived from islet amyloid polypeptide (IAPP). In the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 308 7 شماره
صفحات -
تاریخ انتشار 2015